Any math heads out there?
Eternal fame awaits the person who can solve this.
Any math heads out there?
The following two expressions are equal. That is, substituting any value
of t in the expressions will produce the same value.
Yet, I cannot reduce one to the other using algebra and the trig identities. It must be possible but I can't find a way to do it.
Can you?
Eternal fame awaits the person who can solve this.
Expression 1: [rewritten using standard notation as I see it]--
{8 sqrt(3) cos(t) sqrt[3 cos^2(t) + 1] sin(t)
+ [27 cos^4(t) + 18 cos^2(t) + 3] sin(t)}/
{36 cos^4(t) + 24 cos^2(t) + 4}
Expression 2: [ditto]
[...]
{sqrt[3 cos^2(t) + 1] [9 cos^2(t) + 3] sin(t) + 8 sqrt(3) cos(t) sin(t)}/ {sqrt[3 cos^2(t) + 1] [12 cos^2(t) + 4]}
Any math heads out there?
The following two expressions are equal. That is, substituting any value
of t in the expressions will produce the same value.
Yet, I cannot reduce one to the other using algebra and the trig identities. It must be possible but I can't find a way to do it.
Can you?
Eternal fame awaits the person who can solve this.
Expression 1:
rAc _______________ rAR
rAL _ ro# 2 rAc 4 2 rAR rAf
rAL8 ria ro#ro#3 ria cos(t) ria ro#ro# 3 ria cos(t) + 1 ria sin(t) + rAY27 ria cos(t) + 18 ria cos(t) + 3rAa ria sin(t)rAf
rALroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCrAf
rAL 4 2 rAf
rAY 36 ria cos(t) + 24 ria cos(t) + 4 rAa
Expression 2:
rAc _______________ rAR
rAL ro# 2 rAc 2 rAR _ rAf
rALro#ro# 3 ria cos(t) + 1 ria rAY9 ria cos(t) + 3rAa ria sin(t) + 8 ria ro#ro#3 ria cos(t) ria sin(t)rAf
rALroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCrAf
rAL _______________ rAf
rAL ro# 2 rAc 2 rAR rAf
rAY ro#ro# 3 ria cos(t) + 1 ria rAY12 ria cos(t) + 4rAa rAa
On 12/24/25 7:30 AM, Farley Flud wrote:
Any math heads out there?
The following two expressions are equal. That is, substituting any value
of t in the expressions will produce the same value.
Yet, I cannot reduce one to the other using algebra and the trig identities. >> It must be possible but I can't find a way to do it.
Can you?
Eternal fame awaits the person who can solve this.
Expression 1:
rAc _______________ rAR
rAL _ ro# 2 rAc 4 2 rAR rAf
rAL8 ria ro#ro#3 ria cos(t) ria ro#ro# 3 ria cos(t) + 1 ria sin(t) + rAY27 ria cos(t) + 18 ria cos(t) + 3rAa ria sin(t)rAf
rALroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCrAf
rAL 4 2 rAf
rAY 36 ria cos(t) + 24 ria cos(t) + 4 rAa
Expression 2:
rAc _______________ rAR
rAL ro# 2 rAc 2 rAR _ rAf
rALro#ro# 3 ria cos(t) + 1 ria rAY9 ria cos(t) + 3rAa ria sin(t) + 8 ria ro#ro#3 ria cos(t) ria sin(t)rAf
rALroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCrAf
rAL _______________ rAf
rAL ro# 2 rAc 2 rAR rAf
rAY ro#ro# 3 ria cos(t) + 1 ria rAY12 ria cos(t) + 4rAa rAa
They're equal. Place the two expressions on either sides of an equal
sign. Factor out and get rid of sin(t). Then do the following substitution:
a = square root of (3cost^2 +1)
Both sides will quickly reduce to the same result in terms of a.
On 2026-01-04, Physfitfreak <physfitfreak@gmail.com> wrote:
On 12/24/25 7:30 AM, Farley Flud wrote:
Any math heads out there?
The following two expressions are equal. That is, substituting any value >>> of t in the expressions will produce the same value.
Yet, I cannot reduce one to the other using algebra and the trig identities.
It must be possible but I can't find a way to do it.
Can you?
Eternal fame awaits the person who can solve this.
Expression 1:
rAc _______________ rAR
rAL _ ro# 2 rAc 4 2 rAR rAf
rAL8 ria ro#ro#3 ria cos(t) ria ro#ro# 3 ria cos(t) + 1 ria sin(t) + rAY27 ria cos(t) + 18 ria cos(t) + 3rAa ria sin(t)rAf
rALroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCrAf
rAL 4 2 rAf
rAY 36 ria cos(t) + 24 ria cos(t) + 4 rAa
Expression 2:
rAc _______________ rAR
rAL ro# 2 rAc 2 rAR _ rAf
rALro#ro# 3 ria cos(t) + 1 ria rAY9 ria cos(t) + 3rAa ria sin(t) + 8 ria ro#ro#3 ria cos(t) ria sin(t)rAf
rALroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCrAf
rAL _______________ rAf
rAL ro# 2 rAc 2 rAR rAf
rAY ro#ro# 3 ria cos(t) + 1 ria rAY12 ria cos(t) + 4rAa rAa
They're equal. Place the two expressions on either sides of an equal
sign. Factor out and get rid of sin(t). Then do the following substitution: >>
a = square root of (3cost^2 +1)
Both sides will quickly reduce to the same result in terms of a.
Correct.
Factor.
Simplify the fraction
Factor once more.
Simplify the fraction again.
Both expressions are equal.
Easy peasy.
They're equal. Place the two expressions on either sides of an equal
sign. Factor out and get rid of sin(t). Then do the following substitution:
a = square root of (3cost^2 +1)
2)
_ 2 _
ro#ro#3 ria cos(t) - ro#ro#3 roCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroC
rAc3rAR
rALroCrAf
rAY2rAa
rAc 2 rAR
rAY3 ria cos(t) + 1rAa
[full quote]
Man, how I wish I could still do math.
For some reason, #2 did not print properly. The numerator should
be:
sqrt(3) * cos(t)^2 - sqrt(3)
CrudeSausage <crude@sausa.ge> amok-crossposted in comp.os.linux.advocacy and sci.physics:
Man, how I wish I could still do math.
I wish that one would need something like a driver's license before one
would be allowed to post to Usenet, and that that could be revoked or suspended if one failed to use it properly on a regular basis -- like violating foreign namespaces with "funny" "addresses", bothering other newsgroups with off-topic amok-crossposts, and full-quoting.
F'up2 poster
On Sun, 04 Jan 2026 11:20:03 +0000, Farley Flud wrote:
2)
_ 2 _
ro#ro#3 ria cos(t) - ro#ro#3
roCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroC
rAc3rAR
rALroCrAf
rAY2rAa
rAc 2 rAR
rAY3 ria cos(t) + 1rAa
For some reason, #2 did not print properly. The numerator should
be:
sqrt(3) * cos(t)^2 - sqrt(3)
On 1/4/26 5:31 AM, Farley Flud wrote:
On Sun, 04 Jan 2026 11:20:03 +0000, Farley Flud wrote:
2)
_ 2 _
ro#ro#3 ria cos(t) - ro#ro#3
roCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroCroC
rAc3rAR
rALroCrAf
rAY2rAa
rAc 2 rAR
rAY3 ria cos(t) + 1rAa
For some reason, #2 did not print properly. The numerator should
be:
sqrt(3) * cos(t)^2 - sqrt(3)
On my screen it is properly printed.
Any math heads out there?
Four, of course.
| Sysop: | Amessyroom |
|---|---|
| Location: | Fayetteville, NC |
| Users: | 54 |
| Nodes: | 6 (0 / 6) |
| Uptime: | 17:43:45 |
| Calls: | 742 |
| Files: | 1,218 |
| D/L today: |
4 files (8,203K bytes) |
| Messages: | 184,414 |
| Posted today: | 1 |