• Sums of whole numbers

    From leflynn@leflynn@hotmail.com to rec.puzzles on Thu Oct 30 10:24:38 2025
    From Newsgroup: rec.puzzles

    A recent puzzle in Games Magazine asked readers to find two or more consecutive whole numbers that summed to a specified whole number. This brought the following problem to mind: Describe the set of whole numbers
    which do not admit such a solution.
    L. Flynn
    --- Synchronet 3.21a-Linux NewsLink 1.2
  • From leflynn@leflynn@hotmail.com to rec.puzzles on Thu Oct 30 10:26:33 2025
    From Newsgroup: rec.puzzles

    A recent puzzle in Games Magazine asked readers to find two or more consecutive whole numbers that summed to a specified whole number. This brought the following problem to mind: Describe the set of whole numbers
    which do not admit such a solution.
    L. Flynn
    --- Synchronet 3.21a-Linux NewsLink 1.2
  • From richard@richard@cogsci.ed.ac.uk (Richard Tobin) to rec.puzzles on Thu Oct 30 16:01:49 2025
    From Newsgroup: rec.puzzles

    In article <10dvsf5$ei0r$1@dont-email.me>,
    leflynn <leflynn@hotmail.com> wrote:
    A recent puzzle in Games Magazine asked readers to find two or more >consecutive whole numbers that summed to a specified whole number. This >brought the following problem to mind: Describe the set of whole numbers >which do not admit such a solution.

    A most unexpected result!

    -- Richard



    --- Synchronet 3.21a-Linux NewsLink 1.2
  • From Richard Heathfield@rjh@cpax.org.uk to rec.puzzles on Thu Oct 30 20:07:13 2025
    From Newsgroup: rec.puzzles

    On 30/10/2025 14:26, leflynn wrote:
    A recent puzzle in Games Magazine asked readers to find two or
    more consecutive whole numbers that summed to a specified whole
    number. This brought the following problem to mind: Describe the
    set of whole numbers which do not admit such a solution.
    L. Flynn

    Kinda jumps out, doesn't it?

    It was when I eliminated the sevens - 7k + 7(7-1)/2 - that the
    muse struck. (Yes, I was slow to catch on.)
    --
    Richard Heathfield
    Email: rjh at cpax dot org dot uk
    "Usenet is a strange place" - dmr 29 July 1999
    Sig line 4 vacant - apply within
    --- Synchronet 3.21a-Linux NewsLink 1.2
  • From David Entwistle@qnivq.ragjvfgyr@ogvagrearg.pbz to rec.puzzles on Mon Nov 3 08:47:37 2025
    From Newsgroup: rec.puzzles

    On Thu, 30 Oct 2025 10:24:38 -0400, leflynn wrote:

    A recent puzzle in Games Magazine asked readers to find two or more consecutive whole numbers that summed to a specified whole number. This brought the following problem to mind: Describe the set of whole numbers which do not admit such a solution.
    L. Flynn

    Thanks - an interesting question. I've never attempted a mathematical
    proof before, so would welcome improvements and corrections.

    SPOILER BELOW.
    POILER BELOW.
    OILER BELOW.
    ILER BELOW.
    LER BELOW.
    ER BELOW.
    R BELOW.
    BELOW.
    BELOW.
    ELOW.
    LOW.
    OW.
    W.
    .

    Problem: Describe the set of whole numbers which cannot be formed by
    summing two or more consecutive whole numbers.

    The sums of n consecutive numbers, starting at 1, 2, 3, ... is as shown
    below.

    Sum of 2 numbers: 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, ...
    Sum of 3 numbers: 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, ...
    Sum of 4 numbers: 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, ...
    Sum of 5 numbers: 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, ...
    Sum of 6 numbers: 21, 27, 33, 39, 45, 51, 57, 63, 69, 75, ...
    Sum of 7 numbers: 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, ...
    Sum of 8 numbers: 36, 44, 52, 60, 68, 76, 84, 92, 100, 108, ...
    Sum of 9 numbers: 45, 54, 63, 72, 81, 90, 99, 108, 117, 126, ...
    Sum of 10 numbers: 55, 65, 75, 85, 95, 105, 115, 125, 135, 145, ...

    Of note, the first term in each row (3, 6, 10, 15 etc.) are the triangular numbers, and each sum in the row increases by the number of consecutive numbers under consideration.

    Looking at the numbers included across all sequences, in ascending order,
    we have 3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17 ...
    The numbers excluded are 2, 4, 8, 16 ...

    So the theorem is: the set of numbers 2^p where p >= 0 cannot be formed by summing two or more consecutive whole numbers.

    Proof: Given an arithmetic series of m consecutive integers starting at k
    and with a common difference 1, we can express the series as follows:

    k, k + 1, k + 2 ... k + m - 2, k + m - 1

    We can calculate the sum (S) of the series:

    S = k + (k + 1) + (k + 2) + ... (k + m - 2) + (k + m - 1)

    Reversing the order of the terms gives:

    S = (k + m - 1) + (k + m - 2) + ... (k + 2) + (k + 1) + k

    Adding we get:

    2S = m(2k + m - 1)

    S = m(2k + m - 1)/2

    We note that 2^p only has even factors, while the sum of consecutive
    numbers (S) has the following factors:

    m odd, factors: odd and even / 2.
    m even, factors: even / 2 and odd.

    In each case the number formed by summing two or more consecutive whole numbers has at least one odd factor. Therefore the set of numbers 2^p,
    where p >= 1, cannot be formed by summing two or more consecutive whole numbers.

    I still need to show that all numbers with an odd factor can be decomposed into the sum of consecutive numbers. I'll think about that.
    --
    David Entwistle
    --- Synchronet 3.21a-Linux NewsLink 1.2
  • From richard@richard@cogsci.ed.ac.uk (Richard Tobin) to rec.puzzles on Mon Nov 3 11:35:32 2025
    From Newsgroup: rec.puzzles

    In article <10e9q79$2ndo0$1@dont-email.me>,
    David Entwistle <qnivq.ragjvfgyr@ogvagrearg.pbz> wrote:

    I still need to show that all numbers with an odd factor can be decomposed >into the sum of consecutive numbers. I'll think about that.

    Consider any of its odd factors...

    -- Richard
    --- Synchronet 3.21a-Linux NewsLink 1.2