• Unfinished Bimbo Stuff: 4.1. Trees as terms (Was: Non-Wellfounded and Russell Paradox, what is your opinion?)

    From Mild Shock@janburse@fastmail.fm to sci.physics on Fri Jul 25 23:02:00 2025
    From Newsgroup: sci.physics

    Hi,

    Take this exercise. Exercise 4.1 Draw the tree
    represented by the term n1(n2(n4),n3(n5,n6)). https://book.simply-logical.space/src/text/2_part_ii/4.1.html

    Maybe there was a plan that SWISH can draw trees,
    and it could be that something was implemented as well.

    But I don't see anything dynamic working on the
    above web site link. Next challenge for Simply Logical,

    in another life. Draw a rational tree.
    The Prolog system has them:

    /* SWI-Prolog 9.3.26 */
    ?- X = a(Y,_), Y = b(X,_).
    X = a(b(X, _A), _),
    Y = b(X, _A).

    Bye

    Mild Shock schrieb:

    Hi,

    My beloved Logic professor introduced Non-Wellfounded
    in the form of library cards, sorry only German:

    Wir denken uns dazu eine Kartothek, auf deren
    Karten wieder Karten derselben Kartothek
    aufgef|+hrt sind. Ein Beispiel einer solchen
    Kartothek w|nre etwa das folgende : wir haben
    drei Karten a, b, c; a f|+hrt a und b auf, b
    die Karten a und c, c die Karte b a = (a, b),
    b = (a, c), c = (b). Entsprechend den sich
    nicht selbst als Element enthaltenden Mengen
    fragen wir nach den Karten, die sich nicht
    selbst auff|+hren. Die Karte a ist die einzige,
    die sich selbst auff|+hrt ; b und c sind somit
    die sich nicht selbst auff|+hrenden Karten.

    He then concludes that Non-Wellfounded has still the
    Russell Paradox, and hence also the productive form of it:

    Es gibt somit in jeder Kartothek eine
    Gesamtheit G von Karten, zu der es keine Karte
    gibt, die genau jene aus G auff|+hrt. (F|+r endliche
    Kartotheken ist dies ziemlich selbstverst|nndlich,
    doch wollen wir auch unendliche Kartotheken in
    Betracht ziehen.) Dieser Satz schliesst aber
    nat|+rlich nicht aus, dass es stets m||glich ist,
    eine genau die Karten aus G auff|+hrende Karte
    herzustellen und diese in die Kartothek zu legen.
    Nur m|+ssen wir mit der M||glich-

    What is your opinion? Excerpt from:

    **DIE ANTINOMIEN DER MENGENLEHRE**
    E. Specker, Dialectica, Vol. 8, No. 3 (15. 9. 1954) https://www.jstor.org/stable/42964119?seq=7

    Bye


    Mild Shock schrieb:
    Hi,

    That is extremly embarassing. I donrCOt know
    what you are bragging about, when you wrote
    the below. You are wrestling with a ghost!
    Maybe you didnrCOt follow my superbe link:

    seemingly interesting paper. In stead
    particular, his final coa[l]gebra theorem

    The link behind Hopcroft and Karp (1971) I
    gave, which is a Bisimulation and Equirecursive
    Equality hand-out, has a coalgebra example,
    I used to derive pairs.pl from:

    https://www.cs.cornell.edu/courses/cs6110/2014sp/Lectures/lec35a.pdf

    Bye

    Mild Shock schrieb:
    Concerning this boring nonsense:

    https://book.simply-logical.space/src/text/2_part_ii/5.3.html#

    Funny idea that anybody would be interested just now in
    the year 2025 in things like teaching breadth first
    search versus depth first search, or even be rCLmystifiedrCY
    by such stuff. Its extremly trivial stuff:

    Insert your favorite tree traversal pictures here.

    Its even not artificial intelligence neither has anything
    to do with mathematical logic, rather belongs to computer
    science and discrete mathematics which you have in
    1st year university

    courses, making it moot to call it rCLsimply logicalrCY. It
    reminds me of the idea of teaching how wax candles work
    to dumb down students, when just light bulbs have been
    invented. If this is the outcome

    of the Prolog Education Group 2.0, then good night.



    --- Synchronet 3.21a-Linux NewsLink 1.2