• =?UTF-8?Q?f=28x=29=3Dx=C2=B3+=36x=C2=B2+=31=33x+=31=30?=

    From Richard Hachel@rh@tiscali.fr to fr.sci.maths,sci.math on Sat Aug 30 13:27:28 2025
    From Newsgroup: sci.math



    ----------------------------------

    In french and in an american

    ---------------------------------



    Nous allons |-tudier aujourd'hui la courbe f(x)=x-|+6x-#+13x+10.

    Il s'agit d'une cubique poss|-dant trois racines (une r|-elle, deux complexes).

    Le but n'est pas tant de d|-terminer ces trois racines, c'est tr|?s
    facile.

    Le but est de les repr|-senter toutes les trois sur un plan cart|-sien (ce
    que l'Intelligence artificielle juge impossible), alors qu'un simple
    |-l|?ve de lyc|-e, qui a compris le principe pour le faire, va pouvoir dessiner des diagrammes d'une particuli|?re beaut|- en utilisant DESMOS,
    le logiciel conseill|- par le tr|?s excellent Python, et y placer
    rapidement les racines de mani|?re visible et irr|-futable.

    ---------------------------------------------------------------------------------------------------

    Today we're going to study the curve f(x)=x-|+6x-#+13x+10.

    It's a cubic with three roots (one real, two complex).

    The goal isn't so much to determine these three roots; that's very easy.

    The goal is to represent all three on a Cartesian plane (something that artificial intelligence considers impossible), while a simple high school student, who understands the principle of doing so, will be able to draw particularly beautiful diagrams using DESMOS, the software recommended by
    the excellent Python, and quickly place the roots in a visible and
    irrefutable manner.


    R.H.
    --- Synchronet 3.21a-Linux NewsLink 1.2
  • From sobriquet@dohduhdah@yahoo.com to fr.sci.maths,sci.math on Sat Aug 30 20:47:48 2025
    From Newsgroup: sci.math

    Op 30-8-2025 om 15:27 schreef Richard Hachel:


    ----------------------------------

    -aIn french and in an american

    ---------------------------------



    Nous allons |-tudier aujourd'hui la courbe f(x)=x-|+6x-#+13x+10.

    Il s'agit d'une cubique poss|-dant trois racines (une r|-elle, deux complexes).

    Le but n'est pas tant de d|-terminer ces trois racines, c'est tr|?s facile.

    Le but est de les repr|-senter toutes les trois sur un plan cart|-sien (ce que l'Intelligence artificielle juge impossible), alors qu'un simple
    |-l|?ve de lyc|-e, qui a compris le principe pour le faire, va pouvoir dessiner des diagrammes d'une particuli|?re beaut|- en utilisant DESMOS,
    le logiciel conseill|- par le tr|?s excellent Python, et y placer
    rapidement les racines de mani|?re visible et irr|-futable.

    ---------------------------------------------------------------------------------------------------

    Today we're going to study the curve f(x)=x-|+6x-#+13x+10.

    It's a cubic with three roots (one real, two complex).

    The goal isn't so much to determine these three roots; that's very easy.

    The goal is to represent all three on a Cartesian plane (something that artificial intelligence considers impossible), while a simple high
    school student, who understands the principle of doing so, will be able
    to draw particularly beautiful diagrams using DESMOS, the software recommended by the excellent Python, and quickly place the roots in a visible and irrefutable manner.


    R.H.

    There is one root in the real numbers and two additional roots in the
    complex numbers, as can be visualized with desmos 2d/3d:

    https://www.desmos.com/calculator/i7lclqgt26
    --- Synchronet 3.21a-Linux NewsLink 1.2
  • From Richard Hachel@rh@tiscali.fr to fr.sci.maths,sci.math on Sat Aug 30 19:33:21 2025
    From Newsgroup: sci.math

    Le 30/08/2025 |a 20:47, sobriquet a |-crit :
    Op 30-8-2025 om 15:27 schreef Richard Hachel:


    ----------------------------------

    -aIn french and in an american

    ---------------------------------



    Nous allons |-tudier aujourd'hui la courbe f(x)=x-|+6x-#+13x+10.

    Il s'agit d'une cubique poss|-dant trois racines (une r|-elle, deux
    complexes).

    Le but n'est pas tant de d|-terminer ces trois racines, c'est tr|?s facile. >>
    Le but est de les repr|-senter toutes les trois sur un plan cart|-sien (ce >> que l'Intelligence artificielle juge impossible), alors qu'un simple
    |-l|?ve de lyc|-e, qui a compris le principe pour le faire, va pouvoir
    dessiner des diagrammes d'une particuli|?re beaut|- en utilisant DESMOS,
    le logiciel conseill|- par le tr|?s excellent Python, et y placer
    rapidement les racines de mani|?re visible et irr|-futable.


    ---------------------------------------------------------------------------------------------------

    Today we're going to study the curve f(x)=x-|+6x-#+13x+10.

    It's a cubic with three roots (one real, two complex).

    The goal isn't so much to determine these three roots; that's very easy.

    The goal is to represent all three on a Cartesian plane (something that
    artificial intelligence considers impossible), while a simple high
    school student, who understands the principle of doing so, will be able
    to draw particularly beautiful diagrams using DESMOS, the software
    recommended by the excellent Python, and quickly place the roots in a
    visible and irrefutable manner.


    R.H.

    There is one root in the real numbers and two additional roots in the complex numbers, as can be visualized with desmos 2d/3d:

    https://www.desmos.com/calculator/i7lclqgt26

    Sauf que tes racines |a la con ne passent pas par y=0.

    Et que toujours, toujours, toujours, de v|-ritables salopards, se vantant d'avoir des couilles comme des past|?ques, viendront ouvrir leur gueule
    pour montrer qu'ils ont des cacahu|?tes plus grosses que les miennes.

    Quelle belle bande de tar|-s, les hommes.

    Vous voulez vraiment que je vous montre mes couilles, tas de crapauds?

    LOL.

    Vous allez chier dans vos frocs, ce qui est rigolo ; puis devenir
    m|-chants, ce qui l'est moins.

    L'histoire, je la connais, j'ai lu toute la litt|-rature
    franco-britannique.

    J'ai m|-me lu la science-fiction am|-ricaine.

    Je ne suis pas de la derni|?re averse.

    Pour revenir en charte : qu'est ce que c'est que vos racines |a la con, et
    vos diagrammes d|-biles?

    Mais vous |-tes de grands malades les mecs.

    R.H.


    --- Synchronet 3.21a-Linux NewsLink 1.2
  • From Richard Hachel@rh@tiscali.fr to fr.sci.maths,sci.math on Sat Aug 30 19:35:04 2025
    From Newsgroup: sci.math

    Le 30/08/2025 |a 20:47, sobriquet a |-crit :
    Op 30-8-2025 om 15:27 schreef Richard Hachel:


    ----------------------------------

    -aIn french and in an american

    ---------------------------------

    https://www.desmos.com/calculator/i7lclqgt26

    J'ai ri.

    Qu'est ce que l'on peut faire d'autre, sinon rire?

    R.H.


    --- Synchronet 3.21a-Linux NewsLink 1.2
  • From sobriquet@dohduhdah@yahoo.com to fr.sci.maths,sci.math on Sat Aug 30 22:01:46 2025
    From Newsgroup: sci.math

    Op 30-8-2025 om 21:33 schreef Richard Hachel:
    Le 30/08/2025 |a 20:47, sobriquet a |-crit :
    Op 30-8-2025 om 15:27 schreef Richard Hachel:


    ----------------------------------

    -a-aIn french and in an american

    ---------------------------------



    Nous allons |-tudier aujourd'hui la courbe f(x)=x-|+6x-#+13x+10.

    Il s'agit d'une cubique poss|-dant trois racines (une r|-elle, deux
    complexes).

    Le but n'est pas tant de d|-terminer ces trois racines, c'est tr|?s
    facile.

    Le but est de les repr|-senter toutes les trois sur un plan cart|-sien
    (ce que l'Intelligence artificielle juge impossible), alors qu'un
    simple |-l|?ve de lyc|-e, qui a compris le principe pour le faire, va
    pouvoir dessiner des diagrammes d'une particuli|?re beaut|- en
    utilisant DESMOS, le logiciel conseill|- par le tr|?s excellent Python, >>> et y placer rapidement les racines de mani|?re visible et irr|-futable.


    ---------------------------------------------------------------------------------------------------

    Today we're going to study the curve f(x)=x-|+6x-#+13x+10.

    It's a cubic with three roots (one real, two complex).

    The goal isn't so much to determine these three roots; that's very easy. >>>
    The goal is to represent all three on a Cartesian plane (something
    that artificial intelligence considers impossible), while a simple
    high school student, who understands the principle of doing so, will
    be able to draw particularly beautiful diagrams using DESMOS, the
    software recommended by the excellent Python, and quickly place the
    roots in a visible and irrefutable manner.


    R.H.

    There is one root in the real numbers and two additional roots in the
    complex numbers, as can be visualized with desmos 2d/3d:

    https://www.desmos.com/calculator/i7lclqgt26

    Sauf que tes racines |a la con ne passent pas par y=0.

    Et que toujours, toujours, toujours, de v|-ritables salopards, se vantant d'avoir des couilles comme des past|?ques, viendront ouvrir leur gueule
    pour montrer qu'ils ont des cacahu|?tes plus grosses que les miennes.

    Quelle belle bande de tar|-s, les hommes.

    Vous voulez vraiment que je vous montre mes couilles, tas de crapauds?

    LOL.

    Vous allez chier dans vos frocs, ce qui est rigolo ; puis devenir
    m|-chants, ce qui l'est moins.
    L'histoire, je la connais, j'ai lu toute la litt|-rature franco-britannique.

    J'ai m|-me lu la science-fiction am|-ricaine.

    Je ne suis pas de la derni|?re averse.

    Pour revenir en charte : qu'est ce que c'est que vos racines |a la con,
    et vos diagrammes d|-biles?
    Mais vous |-tes de grands malades les mecs.
    R.H.


    There is the Cartesian plane (x,y,0) where we can visualize the complex
    roots (x+iy) such that f(x+iy)=0,
    where f(x+iy)=(x+iy)-|+6(x+iy)-#+13(x+iy)+10


    --- Synchronet 3.21a-Linux NewsLink 1.2
  • From Richard Hachel@rh@tiscali.fr to fr.sci.maths,sci.math on Sat Aug 30 20:19:45 2025
    From Newsgroup: sci.math

    Le 30/08/2025 |a 22:01, sobriquet a |-crit :
    Op 30-8-2025 om 21:33 schreef Richard Hachel:

    Nous allons |-tudier aujourd'hui la courbe f(x)=x-|+6x-#+13x+10.

    https://www.desmos.com/calculator/i7lclqgt26

    There is the Cartesian plane (x,y,0) where we can visualize the complex roots (x+iy) such that f(x+iy)=0,
    where f(x+iy)=(x+iy)-|+6(x+iy)-#+13(x+iy)+10

    Je ne vois aucune courbe, r|-elle ou imaginaire, passer par les deux
    points indiqu|-s.

    Qui d'ailleurs ne sont m|-me pas sur x'Ox.

    R.H.




    --- Synchronet 3.21a-Linux NewsLink 1.2
  • From sobriquet@dohduhdah@yahoo.com to fr.sci.maths,sci.math on Sat Aug 30 22:39:41 2025
    From Newsgroup: sci.math

    Op 30-8-2025 om 22:19 schreef Richard Hachel:
    Le 30/08/2025 |a 22:01, sobriquet a |-crit :
    Op 30-8-2025 om 21:33 schreef Richard Hachel:

    Nous allons |-tudier aujourd'hui la courbe f(x)=x-|+6x-#+13x+10.

    https://www.desmos.com/calculator/i7lclqgt26

    There is the Cartesian plane (x,y,0) where we can visualize the
    complex roots (x+iy) such that f(x+iy)=0,
    where f(x+iy)=(x+iy)-|+6(x+iy)-#+13(x+iy)+10

    Je ne vois aucune courbe, r|-elle ou imaginaire, passer par les deux
    points indiqu|-s.

    Qui d'ailleurs ne sont m|-me pas sur x'Ox.

    R.H.




    Here you can see the curve in red on the blue surface that represents
    the real part of the function applied to complex numbers:

    https://www.desmos.com/3d/pstad1rh6m


    --- Synchronet 3.21a-Linux NewsLink 1.2
  • From Richard Hachel@rh@tiscali.fr to fr.sci.maths,sci.math on Sat Aug 30 21:19:49 2025
    From Newsgroup: sci.math

    Le 30/08/2025 |a 22:39, sobriquet a |-crit :
    Here you can see the curve in red on the blue surface that represents
    the real part of the function applied to complex numbers:

    Tout cela tourne au plus profond ridicule.

    Nan, laissez, laissez, je vais le faire.

    R.H.
    --- Synchronet 3.21a-Linux NewsLink 1.2
  • From sobriquet@dohduhdah@yahoo.com to fr.sci.maths,sci.math on Sat Aug 30 23:28:45 2025
    From Newsgroup: sci.math

    Op 30-8-2025 om 22:19 schreef Richard Hachel:
    Le 30/08/2025 |a 22:01, sobriquet a |-crit :
    Op 30-8-2025 om 21:33 schreef Richard Hachel:

    Nous allons |-tudier aujourd'hui la courbe f(x)=x-|+6x-#+13x+10.

    https://www.desmos.com/calculator/i7lclqgt26

    There is the Cartesian plane (x,y,0) where we can visualize the
    complex roots (x+iy) such that f(x+iy)=0,
    where f(x+iy)=(x+iy)-|+6(x+iy)-#+13(x+iy)+10

    Je ne vois aucune courbe, r|-elle ou imaginaire, passer par les deux
    points indiqu|-s.

    Qui d'ailleurs ne sont m|-me pas sur x'Ox.

    R.H.



    Here you can even drag the slider for the c variable to the left to
    reveal the Cartesian plane containing the complex roots and the
    associated curve (where the real part is -2) that is embedded in the
    imaginary part of the function f applied to complex numbers.

    https://i.imgur.com/AoWJ6bQ.png

    https://www.desmos.com/3d/y6cfikctgb
    --- Synchronet 3.21a-Linux NewsLink 1.2
  • From Chris M. Thomasson@chris.m.thomasson.1@gmail.com to fr.sci.maths,sci.math on Sat Aug 30 14:55:00 2025
    From Newsgroup: sci.math

    On 8/30/2025 6:27 AM, Richard Hachel wrote:


    ----------------------------------

    -aIn french and in an american

    ---------------------------------



    Nous allons |-tudier aujourd'hui la courbe f(x)=x-|+6x-#+13x+10.

    Il s'agit d'une cubique poss|-dant trois racines (une r|-elle, deux complexes).

    Le but n'est pas tant de d|-terminer ces trois racines, c'est tr|?s facile.

    Le but est de les repr|-senter toutes les trois sur un plan cart|-sien (ce que l'Intelligence artificielle juge impossible), alors qu'un simple
    |-l|?ve de lyc|-e, qui a compris le principe pour le faire, va pouvoir dessiner des diagrammes d'une particuli|?re beaut|- en utilisant DESMOS,
    le logiciel conseill|- par le tr|?s excellent Python, et y placer
    rapidement les racines de mani|?re visible et irr|-futable.

    ---------------------------------------------------------------------------------------------------

    Today we're going to study the curve f(x)=x-|+6x-#+13x+10.

    It's a cubic with three roots (one real, two complex).

    The goal isn't so much to determine these three roots; that's very easy.

    The goal is to represent all three on a Cartesian plane (something that artificial intelligence considers impossible), while a simple high
    school student, who understands the principle of doing so, will be able
    to draw particularly beautiful diagrams using DESMOS, the software recommended by the excellent Python, and quickly place the roots in a visible and irrefutable manner.

    Rendering a root as in (x, y)? Well, that is just plotting that point.
    So, we plot all roots. Humm... If you like roots, perhaps, when you get
    bored, try to implement my multijulia algorithm. Paul was kind enough to
    do a little write up about it:

    https://paulbourke.net/fractals/multijulia

    --- Synchronet 3.21a-Linux NewsLink 1.2
  • From sobriquet@dohduhdah@yahoo.com to fr.sci.maths,sci.math on Sat Aug 30 23:58:06 2025
    From Newsgroup: sci.math

    Op 30-8-2025 om 23:55 schreef Chris M. Thomasson:
    On 8/30/2025 6:27 AM, Richard Hachel wrote:


    ----------------------------------

    -a-aIn french and in an american

    ---------------------------------



    Nous allons |-tudier aujourd'hui la courbe f(x)=x-|+6x-#+13x+10.

    Il s'agit d'une cubique poss|-dant trois racines (une r|-elle, deux
    complexes).

    Le but n'est pas tant de d|-terminer ces trois racines, c'est tr|?s facile. >>
    Le but est de les repr|-senter toutes les trois sur un plan cart|-sien
    (ce que l'Intelligence artificielle juge impossible), alors qu'un
    simple |-l|?ve de lyc|-e, qui a compris le principe pour le faire, va
    pouvoir dessiner des diagrammes d'une particuli|?re beaut|- en utilisant
    DESMOS, le logiciel conseill|- par le tr|?s excellent Python, et y
    placer rapidement les racines de mani|?re visible et irr|-futable.

    ---------------------------------------------------------------------------------------------------

    Today we're going to study the curve f(x)=x-|+6x-#+13x+10.

    It's a cubic with three roots (one real, two complex).

    The goal isn't so much to determine these three roots; that's very easy.

    The goal is to represent all three on a Cartesian plane (something
    that artificial intelligence considers impossible), while a simple
    high school student, who understands the principle of doing so, will
    be able to draw particularly beautiful diagrams using DESMOS, the
    software recommended by the excellent Python, and quickly place the
    roots in a visible and irrefutable manner.

    Rendering a root as in (x, y)? Well, that is just plotting that point.
    So, we plot all roots. Humm... If you like roots, perhaps, when you get bored, try to implement my multijulia algorithm. Paul was kind enough to
    do a little write up about it:

    https://paulbourke.net/fractals/multijulia


    Plants also have roots.

    https://www.desmos.com/calculator/vu0byi2iyt
    --- Synchronet 3.21a-Linux NewsLink 1.2
  • From Richard Hachel@rh@tiscali.fr to fr.sci.maths,sci.math on Sun Aug 31 00:31:32 2025
    From Newsgroup: sci.math

    Le 30/08/2025 |a 22:39, sobriquet a |-crit :
    Op 30-8-2025 om 22:19 schreef Richard Hachel:
    Le 30/08/2025 |a 22:01, sobriquet a |-crit :
    Op 30-8-2025 om 21:33 schreef Richard Hachel:

    Nous allons |-tudier aujourd'hui la courbe f(x)=x-|+6x-#+13x+10.

    https://www.desmos.com/calculator/i7lclqgt26

    There is the Cartesian plane (x,y,0) where we can visualize the
    complex roots (x+iy) such that f(x+iy)=0,
    where f(x+iy)=(x+iy)-|+6(x+iy)-#+13(x+iy)+10

    Je ne vois aucune courbe, r|-elle ou imaginaire, passer par les deux
    points indiqu|-s.

    Qui d'ailleurs ne sont m|-me pas sur x'Ox.

    R.H.




    Here you can see the curve in red on the blue surface that represents
    the real part of the function applied to complex numbers:

    https://www.desmos.com/3d/pstad1rh6m

    Cartesian draw is better.

    Real root in red.

    Complex roots in blue

    <http://nemoweb.net/jntp?D3F03tyNoFxDB1avIicVk_ybg1I@jntp/Data.Media:1>

    R.H.
    <https://www.nemoweb.net/?DataID=D3F03tyNoFxDB1avIicVk_ybg1I@jntp>
    --- Synchronet 3.21a-Linux NewsLink 1.2
  • From Chris M. Thomasson@chris.m.thomasson.1@gmail.com to fr.sci.maths,sci.math on Sat Aug 30 17:35:24 2025
    From Newsgroup: sci.math

    On 8/30/2025 2:58 PM, sobriquet wrote:
    Op 30-8-2025 om 23:55 schreef Chris M. Thomasson:
    On 8/30/2025 6:27 AM, Richard Hachel wrote:


    ----------------------------------

    -a-aIn french and in an american

    ---------------------------------



    Nous allons |-tudier aujourd'hui la courbe f(x)=x-|+6x-#+13x+10.

    Il s'agit d'une cubique poss|-dant trois racines (une r|-elle, deux
    complexes).

    Le but n'est pas tant de d|-terminer ces trois racines, c'est tr|?s
    facile.

    Le but est de les repr|-senter toutes les trois sur un plan cart|-sien
    (ce que l'Intelligence artificielle juge impossible), alors qu'un
    simple |-l|?ve de lyc|-e, qui a compris le principe pour le faire, va
    pouvoir dessiner des diagrammes d'une particuli|?re beaut|- en
    utilisant DESMOS, le logiciel conseill|- par le tr|?s excellent Python, >>> et y placer rapidement les racines de mani|?re visible et irr|-futable.

    ---------------------------------------------------------------------------------------------------

    Today we're going to study the curve f(x)=x-|+6x-#+13x+10.

    It's a cubic with three roots (one real, two complex).

    The goal isn't so much to determine these three roots; that's very easy. >>>
    The goal is to represent all three on a Cartesian plane (something
    that artificial intelligence considers impossible), while a simple
    high school student, who understands the principle of doing so, will
    be able to draw particularly beautiful diagrams using DESMOS, the
    software recommended by the excellent Python, and quickly place the
    roots in a visible and irrefutable manner.

    Rendering a root as in (x, y)? Well, that is just plotting that point.
    So, we plot all roots. Humm... If you like roots, perhaps, when you
    get bored, try to implement my multijulia algorithm. Paul was kind
    enough to do a little write up about it:

    https://paulbourke.net/fractals/multijulia


    Plants also have roots.

    https://www.desmos.com/calculator/vu0byi2iyt

    Nice fern! Love those IFS's.
    --- Synchronet 3.21a-Linux NewsLink 1.2
  • From sobriquet@dohduhdah@yahoo.com to fr.sci.maths,sci.math on Sun Aug 31 02:57:59 2025
    From Newsgroup: sci.math

    Op 31-8-2025 om 02:31 schreef Richard Hachel:
    Le 30/08/2025 |a 22:39, sobriquet a |-crit :
    Op 30-8-2025 om 22:19 schreef Richard Hachel:
    Le 30/08/2025 |a 22:01, sobriquet a |-crit :
    Op 30-8-2025 om 21:33 schreef Richard Hachel:

    Nous allons |-tudier aujourd'hui la courbe f(x)=x-|+6x-#+13x+10.

    https://www.desmos.com/calculator/i7lclqgt26

    There is the Cartesian plane (x,y,0) where we can visualize the
    complex roots (x+iy) such that f(x+iy)=0,
    where f(x+iy)=(x+iy)-|+6(x+iy)-#+13(x+iy)+10

    Je ne vois aucune courbe, r|-elle ou imaginaire, passer par les deux
    points indiqu|-s.

    Qui d'ailleurs ne sont m|-me pas sur x'Ox.

    R.H.




    Here you can see the curve in red on the blue surface that represents
    the real part of the function applied to complex numbers:

    https://www.desmos.com/3d/pstad1rh6m

    Cartesian draw is better.

    Real root in red.

    Complex roots in blue

    <http://nemoweb.net/jntp?D3F03tyNoFxDB1avIicVk_ybg1I@jntp/Data.Media:1>

    R.H. <https://www.nemoweb.net/?DataID=D3F03tyNoFxDB1avIicVk_ybg1I@jntp>

    You come up with an unrelated 3rd degree polynomial
    g(x)=-2x-|-12x-#-22x-12 that has nothing to do with the original
    polynomial f(x)=x-|+6x-#+13x+10


    https://www.desmos.com/calculator/3jwklmzeys


    You're using crackpot math, where you put complex numbers with a
    non-zero imaginary part on the real number line.
    --- Synchronet 3.21a-Linux NewsLink 1.2
  • From Moebius@invalid@example.invalid to fr.sci.maths,sci.math on Sun Aug 31 04:18:24 2025
    From Newsgroup: sci.math

    Am 31.08.2025 um 02:57 schrieb sobriquet:

    You're using crackpot math [...]

    You think? :-)

    --- Synchronet 3.21a-Linux NewsLink 1.2
  • From Richard Hachel@rh@tiscali.fr to fr.sci.maths,sci.math on Sun Aug 31 02:35:05 2025
    From Newsgroup: sci.math

    Le 31/08/2025 |a 02:58, sobriquet a |-crit :
    Op 31-8-2025 om 02:31 schreef Richard Hachel:

    You come up with an unrelated 3rd degree polynomial
    g(x)=-2x-|-12x-#-22x-12 that has nothing to do with the original
    polynomial f(x)=x-|+6x-#+13x+10

    No, YOU, you say that 3rd degree polynomial g(x)=-2x-|-12x-#-22x-12 has nothing to do with the original
    polynomial f(x)=x-|+6x-#+13x+10

    That's not what I'm saying.
    I said that we could represent the pure or complex imaginary roots of all possible Cartesian functions on a simple Cartesian coordinate system Ox,
    Oy.
    This is what I'm doing here in the representation you created.
    You've plotted the first function in red, and its imaginary twin function
    in blue.
    If you look closely at your own diagram, you'll see that the real root of
    the first function appears on the red curve, and the two complex roots on
    the blue curve (-2+i, -2-i).
    Conversely, the two real roots of the blue curve appear, and its pure imaginary root is that of the red curve (i.e., x=2i).
    This is a very elegant way of placing the complex or pure imaginary roots
    of all Cartesian functions; you just need to determine each time which is
    the associated twin function, the phenomenon being reciprocal, and you
    will be able to invariably, and without error, place all the roots of the functions.

    Yout draw is here :

    <http://nemoweb.net/jntp?iJiOt9UbvLsyM2lpv-C_WRbAlEU@jntp/Data.Media:1>

    R.H.
    --
    Ce message a |-t|- post|- avec Nemo : <https://www.nemoweb.net/?DataID=iJiOt9UbvLsyM2lpv-C_WRbAlEU@jntp>
    --- Synchronet 3.21a-Linux NewsLink 1.2
  • From Richard Hachel@rh@tiscali.fr to sci.math on Sun Aug 31 02:52:52 2025
    From Newsgroup: sci.math

    Le 31/08/2025 |a 04:18, Moebius a |-crit :
    Am 31.08.2025 um 02:57 schrieb sobriquet:

    You're using crackpot math [...]

    You think? :-)

    Je crois surtout avoir affaire |a une bien belle bande de cr|-tins.

    Usenet se d|-grade d'ann|-es en ann|-es.

    J'explique |o t|-te de con qu'il existe une possibilit|- |-l|-gante de
    placer les racines d'une fonction quelconque, polynomiale, exponentielle, logarithmique, etc... sur un simple rep|?re cart|-sien, en utilisant l'axe
    des x, mais de fa|oon invers|-e.

    Le cr|-tin croit avoir affaire |a un troll.

    Le nombre d'abrutis qui trainent sur les r|-seaux publics est affolant.

    J'en arrive |a me demander si la t|-l|- n'est finalement pas mieux, en |-coutant les actualit|-s de monsieur Pujadas de la Roseraie-Macron, ou
    les |-missions scientifiques des fr|?res Bogdanov nous expliquant les longueurs d'onde relativistes de l'horizon des trous noirs.

    Bandes d'abrutis va.

    Pauvres clowns.

    R.H.
    --- Synchronet 3.21a-Linux NewsLink 1.2
  • From sobriquet@dohduhdah@yahoo.com to fr.sci.maths,sci.math on Sun Aug 31 05:55:23 2025
    From Newsgroup: sci.math

    Op 31-8-2025 om 04:35 schreef Richard Hachel:
    Le 31/08/2025 |a 02:58, sobriquet a |-crit :
    Op 31-8-2025 om 02:31 schreef Richard Hachel:

    You come up with an unrelated 3rd degree polynomial
    g(x)=-2x-|-12x-#-22x-12 that has nothing to do with the original
    polynomial f(x)=x-|+6x-#+13x+10

    No, YOU, you say that 3rd degree polynomial g(x)=-2x-|-12x-#-22x-12 has nothing to do with the original polynomial f(x)=x-|+6x-#+13x+10

    That's not what I'm saying.
    I said that we could represent the pure or complex imaginary roots of
    all possible Cartesian functions on a simple Cartesian coordinate system
    Ox, Oy.
    This is what I'm doing here in the representation you created.
    You've plotted the first function in red, and its imaginary twin
    function in blue.
    If you look closely at your own diagram, you'll see that the real root
    of the first function appears on the red curve, and the two complex
    roots on the blue curve (-2+i, -2-i).
    Conversely, the two real roots of the blue curve appear, and its pure imaginary root is that of the red curve (i.e., x=2i).
    This is a very elegant way of placing the complex or pure imaginary
    roots of all Cartesian functions; you just need to determine each time
    which is the associated twin function, the phenomenon being reciprocal,
    and you will be able to invariably, and without error, place all the
    roots of the functions.

    Yout draw is here :

    <http://nemoweb.net/jntp?iJiOt9UbvLsyM2lpv-C_WRbAlEU@jntp/Data.Media:1>

    R.H.

    Nonsense, what I created was a curve that represents the intersection of
    the plane x=-2 with the imaginary part of the function f applied to
    complex numbers (the red curve as shown below, and it has nothing to do
    with that function g you came up with (the green curve as shown below,
    if we ignore the fact that we're plotting the curve in the plane x=-2).

    https://www.desmos.com/3d/boamr5su9s

    --- Synchronet 3.21a-Linux NewsLink 1.2
  • From Richard Hachel@rh@tiscali.fr to fr.sci.maths,sci.math on Sun Aug 31 04:13:12 2025
    From Newsgroup: sci.math

    Le 31/08/2025 |a 05:55, sobriquet a |-crit :
    Op 31-8-2025 om 04:35 schreef Richard Hachel:

    No, YOU, you say that 3rd degree polynomial g(x)=-2x-|-12x-#-22x-12 has
    nothing to do with the original polynomial f(x)=x-|+6x-#+13x+10

    it has nothing to do with that function g you came up

    Please don't talk nonsense, it hurts me, sniff...
    Do you really think I pulled my function g(x) out of a hat?
    No, not at all. Every real function f(x) has a twin imaginary function
    g(x) where its pure or complex imaginary roots are found. The phenomenon
    is also reciprocal. The complex roots of the other function are the real
    roots of the first, and this is true for all universal functions.

    R.H.




    --- Synchronet 3.21a-Linux NewsLink 1.2
  • From efji@efji@efi.efji to fr.sci.maths,sci.math on Sun Aug 31 09:45:46 2025
    From Newsgroup: sci.math

    Le 31/08/2025 |a 06:13, Richard Hachel a |-crit-a:
    Do you really think I pulled my function g(x) out of a hat?

    out of your filthy ass
    --
    F.J.
    --- Synchronet 3.21a-Linux NewsLink 1.2
  • From Richard Hachel@rh@tiscali.fr to fr.sci.maths,sci.math on Sun Aug 31 11:06:58 2025
    From Newsgroup: sci.math

    Le 31/08/2025 |a 09:45, efji a |-crit :
    Le 31/08/2025 |a 06:13, Richard Hachel a |-crit-a:
    Do you really think I pulled my function g(x) out of a hat?

    out of your filthy ass

    Ce n'est pas tr|?s gentil.

    Sniffff...

    R.H.
    --- Synchronet 3.21a-Linux NewsLink 1.2