Sysop: | Amessyroom |
---|---|
Location: | Fayetteville, NC |
Users: | 23 |
Nodes: | 6 (0 / 6) |
Uptime: | 52:31:20 |
Calls: | 583 |
Files: | 1,139 |
D/L today: |
179 files (27,921K bytes) |
Messages: | 111,616 |
----------------------------------
-aIn french and in an american
---------------------------------
Nous allons |-tudier aujourd'hui la courbe f(x)=x-|+6x-#+13x+10.
Il s'agit d'une cubique poss|-dant trois racines (une r|-elle, deux complexes).
Le but n'est pas tant de d|-terminer ces trois racines, c'est tr|?s facile.
Le but est de les repr|-senter toutes les trois sur un plan cart|-sien (ce que l'Intelligence artificielle juge impossible), alors qu'un simple
|-l|?ve de lyc|-e, qui a compris le principe pour le faire, va pouvoir dessiner des diagrammes d'une particuli|?re beaut|- en utilisant DESMOS,
le logiciel conseill|- par le tr|?s excellent Python, et y placer
rapidement les racines de mani|?re visible et irr|-futable.
---------------------------------------------------------------------------------------------------
Today we're going to study the curve f(x)=x-|+6x-#+13x+10.
It's a cubic with three roots (one real, two complex).
The goal isn't so much to determine these three roots; that's very easy.
The goal is to represent all three on a Cartesian plane (something that artificial intelligence considers impossible), while a simple high
school student, who understands the principle of doing so, will be able
to draw particularly beautiful diagrams using DESMOS, the software recommended by the excellent Python, and quickly place the roots in a visible and irrefutable manner.
R.H.
Op 30-8-2025 om 15:27 schreef Richard Hachel:
----------------------------------
-aIn french and in an american
---------------------------------
Nous allons |-tudier aujourd'hui la courbe f(x)=x-|+6x-#+13x+10.
Il s'agit d'une cubique poss|-dant trois racines (une r|-elle, deux
complexes).
Le but n'est pas tant de d|-terminer ces trois racines, c'est tr|?s facile. >>
Le but est de les repr|-senter toutes les trois sur un plan cart|-sien (ce >> que l'Intelligence artificielle juge impossible), alors qu'un simple
|-l|?ve de lyc|-e, qui a compris le principe pour le faire, va pouvoir
dessiner des diagrammes d'une particuli|?re beaut|- en utilisant DESMOS,
le logiciel conseill|- par le tr|?s excellent Python, et y placer
rapidement les racines de mani|?re visible et irr|-futable.
---------------------------------------------------------------------------------------------------
Today we're going to study the curve f(x)=x-|+6x-#+13x+10.
It's a cubic with three roots (one real, two complex).
The goal isn't so much to determine these three roots; that's very easy.
The goal is to represent all three on a Cartesian plane (something that
artificial intelligence considers impossible), while a simple high
school student, who understands the principle of doing so, will be able
to draw particularly beautiful diagrams using DESMOS, the software
recommended by the excellent Python, and quickly place the roots in a
visible and irrefutable manner.
R.H.
There is one root in the real numbers and two additional roots in the complex numbers, as can be visualized with desmos 2d/3d:
https://www.desmos.com/calculator/i7lclqgt26
Op 30-8-2025 om 15:27 schreef Richard Hachel:
----------------------------------
-aIn french and in an american
---------------------------------
https://www.desmos.com/calculator/i7lclqgt26
Le 30/08/2025 |a 20:47, sobriquet a |-crit :
Op 30-8-2025 om 15:27 schreef Richard Hachel:
----------------------------------
-a-aIn french and in an american
---------------------------------
Nous allons |-tudier aujourd'hui la courbe f(x)=x-|+6x-#+13x+10.
Il s'agit d'une cubique poss|-dant trois racines (une r|-elle, deux
complexes).
Le but n'est pas tant de d|-terminer ces trois racines, c'est tr|?s
facile.
Le but est de les repr|-senter toutes les trois sur un plan cart|-sien
(ce que l'Intelligence artificielle juge impossible), alors qu'un
simple |-l|?ve de lyc|-e, qui a compris le principe pour le faire, va
pouvoir dessiner des diagrammes d'une particuli|?re beaut|- en
utilisant DESMOS, le logiciel conseill|- par le tr|?s excellent Python, >>> et y placer rapidement les racines de mani|?re visible et irr|-futable.
---------------------------------------------------------------------------------------------------
Today we're going to study the curve f(x)=x-|+6x-#+13x+10.
It's a cubic with three roots (one real, two complex).
The goal isn't so much to determine these three roots; that's very easy. >>>
The goal is to represent all three on a Cartesian plane (something
that artificial intelligence considers impossible), while a simple
high school student, who understands the principle of doing so, will
be able to draw particularly beautiful diagrams using DESMOS, the
software recommended by the excellent Python, and quickly place the
roots in a visible and irrefutable manner.
R.H.
There is one root in the real numbers and two additional roots in the
complex numbers, as can be visualized with desmos 2d/3d:
https://www.desmos.com/calculator/i7lclqgt26
Sauf que tes racines |a la con ne passent pas par y=0.
Et que toujours, toujours, toujours, de v|-ritables salopards, se vantant d'avoir des couilles comme des past|?ques, viendront ouvrir leur gueule
pour montrer qu'ils ont des cacahu|?tes plus grosses que les miennes.
Quelle belle bande de tar|-s, les hommes.
Vous voulez vraiment que je vous montre mes couilles, tas de crapauds?
LOL.
Vous allez chier dans vos frocs, ce qui est rigolo ; puis devenir
m|-chants, ce qui l'est moins.
L'histoire, je la connais, j'ai lu toute la litt|-rature franco-britannique.
J'ai m|-me lu la science-fiction am|-ricaine.
Je ne suis pas de la derni|?re averse.
Pour revenir en charte : qu'est ce que c'est que vos racines |a la con,
et vos diagrammes d|-biles?
Mais vous |-tes de grands malades les mecs.
R.H.
Op 30-8-2025 om 21:33 schreef Richard Hachel:
Nous allons |-tudier aujourd'hui la courbe f(x)=x-|+6x-#+13x+10.
https://www.desmos.com/calculator/i7lclqgt26
There is the Cartesian plane (x,y,0) where we can visualize the complex roots (x+iy) such that f(x+iy)=0,
where f(x+iy)=(x+iy)-|+6(x+iy)-#+13(x+iy)+10
Le 30/08/2025 |a 22:01, sobriquet a |-crit :
Op 30-8-2025 om 21:33 schreef Richard Hachel:
Nous allons |-tudier aujourd'hui la courbe f(x)=x-|+6x-#+13x+10.
https://www.desmos.com/calculator/i7lclqgt26
There is the Cartesian plane (x,y,0) where we can visualize the
complex roots (x+iy) such that f(x+iy)=0,
where f(x+iy)=(x+iy)-|+6(x+iy)-#+13(x+iy)+10
Je ne vois aucune courbe, r|-elle ou imaginaire, passer par les deux
points indiqu|-s.
Qui d'ailleurs ne sont m|-me pas sur x'Ox.
R.H.
Here you can see the curve in red on the blue surface that represents
the real part of the function applied to complex numbers:
Le 30/08/2025 |a 22:01, sobriquet a |-crit :
Op 30-8-2025 om 21:33 schreef Richard Hachel:
Nous allons |-tudier aujourd'hui la courbe f(x)=x-|+6x-#+13x+10.
https://www.desmos.com/calculator/i7lclqgt26
There is the Cartesian plane (x,y,0) where we can visualize the
complex roots (x+iy) such that f(x+iy)=0,
where f(x+iy)=(x+iy)-|+6(x+iy)-#+13(x+iy)+10
Je ne vois aucune courbe, r|-elle ou imaginaire, passer par les deux
points indiqu|-s.
Qui d'ailleurs ne sont m|-me pas sur x'Ox.
R.H.
----------------------------------
-aIn french and in an american
---------------------------------
Nous allons |-tudier aujourd'hui la courbe f(x)=x-|+6x-#+13x+10.
Il s'agit d'une cubique poss|-dant trois racines (une r|-elle, deux complexes).
Le but n'est pas tant de d|-terminer ces trois racines, c'est tr|?s facile.
Le but est de les repr|-senter toutes les trois sur un plan cart|-sien (ce que l'Intelligence artificielle juge impossible), alors qu'un simple
|-l|?ve de lyc|-e, qui a compris le principe pour le faire, va pouvoir dessiner des diagrammes d'une particuli|?re beaut|- en utilisant DESMOS,
le logiciel conseill|- par le tr|?s excellent Python, et y placer
rapidement les racines de mani|?re visible et irr|-futable.
---------------------------------------------------------------------------------------------------
Today we're going to study the curve f(x)=x-|+6x-#+13x+10.
It's a cubic with three roots (one real, two complex).
The goal isn't so much to determine these three roots; that's very easy.
The goal is to represent all three on a Cartesian plane (something that artificial intelligence considers impossible), while a simple high
school student, who understands the principle of doing so, will be able
to draw particularly beautiful diagrams using DESMOS, the software recommended by the excellent Python, and quickly place the roots in a visible and irrefutable manner.
On 8/30/2025 6:27 AM, Richard Hachel wrote:
----------------------------------
-a-aIn french and in an american
---------------------------------
Nous allons |-tudier aujourd'hui la courbe f(x)=x-|+6x-#+13x+10.
Il s'agit d'une cubique poss|-dant trois racines (une r|-elle, deux
complexes).
Le but n'est pas tant de d|-terminer ces trois racines, c'est tr|?s facile. >>
Le but est de les repr|-senter toutes les trois sur un plan cart|-sien
(ce que l'Intelligence artificielle juge impossible), alors qu'un
simple |-l|?ve de lyc|-e, qui a compris le principe pour le faire, va
pouvoir dessiner des diagrammes d'une particuli|?re beaut|- en utilisant
DESMOS, le logiciel conseill|- par le tr|?s excellent Python, et y
placer rapidement les racines de mani|?re visible et irr|-futable.
---------------------------------------------------------------------------------------------------
Today we're going to study the curve f(x)=x-|+6x-#+13x+10.
It's a cubic with three roots (one real, two complex).
The goal isn't so much to determine these three roots; that's very easy.
The goal is to represent all three on a Cartesian plane (something
that artificial intelligence considers impossible), while a simple
high school student, who understands the principle of doing so, will
be able to draw particularly beautiful diagrams using DESMOS, the
software recommended by the excellent Python, and quickly place the
roots in a visible and irrefutable manner.
Rendering a root as in (x, y)? Well, that is just plotting that point.
So, we plot all roots. Humm... If you like roots, perhaps, when you get bored, try to implement my multijulia algorithm. Paul was kind enough to
do a little write up about it:
https://paulbourke.net/fractals/multijulia
Op 30-8-2025 om 22:19 schreef Richard Hachel:
Le 30/08/2025 |a 22:01, sobriquet a |-crit :
Op 30-8-2025 om 21:33 schreef Richard Hachel:
Nous allons |-tudier aujourd'hui la courbe f(x)=x-|+6x-#+13x+10.
https://www.desmos.com/calculator/i7lclqgt26
There is the Cartesian plane (x,y,0) where we can visualize the
complex roots (x+iy) such that f(x+iy)=0,
where f(x+iy)=(x+iy)-|+6(x+iy)-#+13(x+iy)+10
Je ne vois aucune courbe, r|-elle ou imaginaire, passer par les deux
points indiqu|-s.
Qui d'ailleurs ne sont m|-me pas sur x'Ox.
R.H.
Here you can see the curve in red on the blue surface that represents
the real part of the function applied to complex numbers:
https://www.desmos.com/3d/pstad1rh6m
Op 30-8-2025 om 23:55 schreef Chris M. Thomasson:
On 8/30/2025 6:27 AM, Richard Hachel wrote:
----------------------------------
-a-aIn french and in an american
---------------------------------
Nous allons |-tudier aujourd'hui la courbe f(x)=x-|+6x-#+13x+10.
Il s'agit d'une cubique poss|-dant trois racines (une r|-elle, deux
complexes).
Le but n'est pas tant de d|-terminer ces trois racines, c'est tr|?s
facile.
Le but est de les repr|-senter toutes les trois sur un plan cart|-sien
(ce que l'Intelligence artificielle juge impossible), alors qu'un
simple |-l|?ve de lyc|-e, qui a compris le principe pour le faire, va
pouvoir dessiner des diagrammes d'une particuli|?re beaut|- en
utilisant DESMOS, le logiciel conseill|- par le tr|?s excellent Python, >>> et y placer rapidement les racines de mani|?re visible et irr|-futable.
---------------------------------------------------------------------------------------------------
Today we're going to study the curve f(x)=x-|+6x-#+13x+10.
It's a cubic with three roots (one real, two complex).
The goal isn't so much to determine these three roots; that's very easy. >>>
The goal is to represent all three on a Cartesian plane (something
that artificial intelligence considers impossible), while a simple
high school student, who understands the principle of doing so, will
be able to draw particularly beautiful diagrams using DESMOS, the
software recommended by the excellent Python, and quickly place the
roots in a visible and irrefutable manner.
Rendering a root as in (x, y)? Well, that is just plotting that point.
So, we plot all roots. Humm... If you like roots, perhaps, when you
get bored, try to implement my multijulia algorithm. Paul was kind
enough to do a little write up about it:
https://paulbourke.net/fractals/multijulia
Plants also have roots.
https://www.desmos.com/calculator/vu0byi2iyt
Le 30/08/2025 |a 22:39, sobriquet a |-crit :
Op 30-8-2025 om 22:19 schreef Richard Hachel:
Le 30/08/2025 |a 22:01, sobriquet a |-crit :
Op 30-8-2025 om 21:33 schreef Richard Hachel:
Nous allons |-tudier aujourd'hui la courbe f(x)=x-|+6x-#+13x+10.
https://www.desmos.com/calculator/i7lclqgt26
There is the Cartesian plane (x,y,0) where we can visualize the
complex roots (x+iy) such that f(x+iy)=0,
where f(x+iy)=(x+iy)-|+6(x+iy)-#+13(x+iy)+10
Je ne vois aucune courbe, r|-elle ou imaginaire, passer par les deux
points indiqu|-s.
Qui d'ailleurs ne sont m|-me pas sur x'Ox.
R.H.
Here you can see the curve in red on the blue surface that represents
the real part of the function applied to complex numbers:
https://www.desmos.com/3d/pstad1rh6m
Cartesian draw is better.
Real root in red.
Complex roots in blue
<http://nemoweb.net/jntp?D3F03tyNoFxDB1avIicVk_ybg1I@jntp/Data.Media:1>
R.H. <https://www.nemoweb.net/?DataID=D3F03tyNoFxDB1avIicVk_ybg1I@jntp>
You're using crackpot math [...]
Op 31-8-2025 om 02:31 schreef Richard Hachel:
You come up with an unrelated 3rd degree polynomial
g(x)=-2x-|-12x-#-22x-12 that has nothing to do with the original
polynomial f(x)=x-|+6x-#+13x+10
Am 31.08.2025 um 02:57 schrieb sobriquet:
You're using crackpot math [...]
You think? :-)
Le 31/08/2025 |a 02:58, sobriquet a |-crit :
Op 31-8-2025 om 02:31 schreef Richard Hachel:
You come up with an unrelated 3rd degree polynomial
g(x)=-2x-|-12x-#-22x-12 that has nothing to do with the original
polynomial f(x)=x-|+6x-#+13x+10
No, YOU, you say that 3rd degree polynomial g(x)=-2x-|-12x-#-22x-12 has nothing to do with the original polynomial f(x)=x-|+6x-#+13x+10
That's not what I'm saying.
I said that we could represent the pure or complex imaginary roots of
all possible Cartesian functions on a simple Cartesian coordinate system
Ox, Oy.
This is what I'm doing here in the representation you created.
You've plotted the first function in red, and its imaginary twin
function in blue.
If you look closely at your own diagram, you'll see that the real root
of the first function appears on the red curve, and the two complex
roots on the blue curve (-2+i, -2-i).
Conversely, the two real roots of the blue curve appear, and its pure imaginary root is that of the red curve (i.e., x=2i).
This is a very elegant way of placing the complex or pure imaginary
roots of all Cartesian functions; you just need to determine each time
which is the associated twin function, the phenomenon being reciprocal,
and you will be able to invariably, and without error, place all the
roots of the functions.
Yout draw is here :
<http://nemoweb.net/jntp?iJiOt9UbvLsyM2lpv-C_WRbAlEU@jntp/Data.Media:1>
R.H.
Op 31-8-2025 om 04:35 schreef Richard Hachel:
No, YOU, you say that 3rd degree polynomial g(x)=-2x-|-12x-#-22x-12 has
nothing to do with the original polynomial f(x)=x-|+6x-#+13x+10
it has nothing to do with that function g you came up
Do you really think I pulled my function g(x) out of a hat?
Le 31/08/2025 |a 06:13, Richard Hachel a |-crit-a:
Do you really think I pulled my function g(x) out of a hat?
out of your filthy ass